222. Norbornanes

Part 18

Inductive Charge Dispersal in the Solvolyses of 4- and 5-Substituted 2-Norbornyl p -Toluenesulfonates

by Francesco Fuso, Cyril A. Grob*, Pawel Sawlewicz, and Guo Wei Yao

Institute of Organic Chemistry, University of Basel, St. Johanns-Ring 19, CH-4056 Basel

 $(23.1X.86)$

The solvolysis rates and products of 4- and 5 -exo-substituted 2-exo- and 2-endo-norbornyl tosylates 9 and 10, respectively, are reported. The logarithms of the rate constants (log k) correlate linearly with the inductive constants σ_1^{α} for the substituents. A comparison of the reaction constants ρ_1 for the 4-, 5-, 6-, and 7-substituted 2-exo- and 2-endo-tosylates 9, 10, 1, and 2 respectively, indicates that inductivity is higher for 2-exo-ionization than for 2-endo-ionization in all series. This observation is attributed to the more favorable alignment of neighboring C-atoms for dorsal participation in exo -ionization, especially, in the case of C(6).

It was shown in previous communications [1] that the solvolysis rates and products of $2\text{-}exo\text{-}$ and $2\text{-}endo\text{-}norbornyl p-toluene nullfonates (tosylates) 1 and 2, respectively, are$ controlled by the inductive (I) effect¹) of 6-exo- and 7-anti-substituents²). Furthermore, the sensitivity of rate to the I effect of substituents³), ρ_1 , the so called inductivity [4a], was much higher for exo-1 than for the other three series.

 $\mathbf{1}_{\mathcal{L}}$ As measured by the pK_a of 4-substituted quinuclidines [3].

 \mathbf{r}_1 For the influence of 6-endo-substituents, see [2].

 $3₁$ Derived from the equation $\log k = \rho_1 \sigma_1^q + \log k_0$.

The large difference between the ρ_1 values for exo-1 and endo-2 ($\Delta \rho_1 = 1.28$) is especially pertinent to the frequently discussed high $e_{xo}/endo$ rate ratios of more than 300 observed in the solvolyses of the parent tosylates $exo-1$ and endo-1 $(R = H)^4$). The rate ratio of 311 observed in 80% EtOH was discussed earlier [5] in terms of differential C,C hyperconjugation of the C(1)–C(6) and C(1)–C(7) σ bonds, respectively, in the strained norbornane structure. However, this view was modified in the light of further results [l]. Thus, hydrolysis of exo-1 led to 2-exo-norbornanols with complete retention of configuration at $C(2)$, except when R was a strong electron acceptor, such as $COOCH₃$, F, and CN. In these cases, retention *and* inversion were observed while *exolendo* rate ratios dropped to less than one [11. In contrast, hydrolysis of *endo-* **1** and *endo-* **2** yielded only 2-exo-norbornanols with complete inversion, regardless of the I effect of R.

These results indicated graded bridging of the cationic center C(2) by C(6) in the ion **3** from the exo- 1-series and the absence of such bridging in the ion **4** from the endo-2-series. The dotted bond in **3** implies a weak bonding interaction between C(6) and C(2) that hinders *endo*-attack by nucleophiles, as in all cases of neighboring-group participation [6]. It was also noted that considerable amounts of nortricyclanes **5** were formed from both series 1 and 2; however, the more strained tricyclo^{[2.2.1.0²] heptanes 6 were not} observed. It was, therefore, concluded that bridging, as revealed by ρ_1 and the stereochemical outcome, is subject to bridging strain and that direct or 'through-space' induction involves graded electron shifts from neighboring atoms').

The large difference between the inductivities of *exo*-1 and *endo-2* ($\Delta \rho_1 = 1.28$) indicates high electron mobility between $C(6)$ and $C(2)$ and low mobility between $C(7)$ and C(2), although the distance is somewhat shorter in the latter case *(Cf.* Table *9).* This is not accounted for in current models for the transmission of polar effects [8]. Nor does differential C,C hyperconjugation of the $C(6)-C(1)$ and $C(7)-C(1)$ bonds provide a satisfactory explanation. The latter model implies the involvement of two electrons from the C(6)–C(1) bond only, as illustrated in $7 (R = H)$. While such σ participation was not detectable in the solvolyses of several unstrained alicyclic compounds [9], it could well be a stabilizing factor in norbornyl cations, especially in the 6,6-dimethyl derivative **7** (R = CH,). But in fact, the opposite is observed, for **6,6-dimethyl-2-exo-norbornyl** tosylate **8** ($R = CH_1$) reacts 25 times slower than the parent tosylate **8** ($R = H$)⁶).

In view of the strong directional dependence of inductivity in 2-norbornyl cations, it was of interest to investigate the rates, ρ_1 values and hydrolysis products of the 4- and 5-substituted 2-ex0 - and 2-endo -norbornyl tosylates **9** and **10,** respectively, listed in Tables $1-4$ ⁷). Lenoir et al. [12] studied the effect of substituents at C(5) on solvolysis rates and products of some 2 -exo-norbornyl arylsulfonates. Subsequently, Apeloig et al. [13] and Wilcox and *Tuszynski* [141 reported kinetic studies on 5-exo- and 5-endo-CN-substituted norbornyl sulfonates. Their conclusions are discussed below.

^{4,} For a recent discussion, see [4].

^{5,} Charge dispersal in carbocations is also revealed by NMR spectroscopy as shown by the fundamental **work of** *Oluh* [7].

^{6,} In AcOH [10]; in 80% EtOH the deceleration is a factor of 28 (unpublished results).

^{7,} **A** short communication has been published [Ill.

Table 2. First-Order Rate Constants for 10^{-3} M Solutions of 1-R-3-endo-Norbornyl Tosylates (endo-9) (in 80% (v/v) EtOH)

R	$T[\degree]$	$k [s^{-1}]$	H^{\neq} [kcal/mol]	S^{\neq} [cal/mol·degree]	
H^a)	70.00	$8.42 \cdot 10^{-5}$			
CH ₂ OH	79.98 90.05 99.94 $70.00b$)	$1.32 \cdot 10^{-4}$ $3.56 \cdot 10^{-4}$ $9.02 \cdot 10^{-4}$ $4.64 \cdot 10^{-5}$	24.5	-7.3	
CH ₂ OAc	80.20 90.04 100.06 70.00 ^b	$4.50 \cdot 10^{-5}$ $1.19 \cdot 10^{-4}$ $3.14 \cdot 10^{-4}$ $1.51 \cdot 10^{-5}$	24.9	-8.3	

$\mathbf R$	$T[\degree]$	$k [s^{-1}]$	H^{\neq} [kcal/mol]	S^{\neq} [cal/mol·degree]
CH ₂ Cl	90.11 100.06 110.13 $70.00b$)	$9.09 \cdot 10^{-5}$ $2.29 \cdot 10^{-4}$ $5.57 \cdot 10^{-4}$ $1.19 \cdot 10^{-5}$	24.3	-10.5
CH ₂ OTs	99.98 109.97 120.02 $70.00b$)	$1.23 \cdot 10^{-4}$ $3.03 \cdot 10^{-4}$ $7.24 \cdot 10^{-4}$ $5.92 \cdot 10^{-6}$	25.0	-9.8
COOCH ₃	109.95 120.05 130.07 $70.00b$)	$1.91 \cdot 10^{-4}$ $4.60 \cdot 10^{-4}$ $1.07 \cdot 10^{-3}$ $3.45 \cdot 10^{-6}$	25.5	-9.5
OAc	110.03 120.05 130.01 $70.00b$)	$8.97 \cdot 10^{-5}$ $2.17 \cdot 10^{-4}$ $5.04 \cdot 10^{-4}$ $1.56 \cdot 10^{-6}$	25.7	-10.4
C1	109.97 120.03 130.01 $70.00b$)	$3.91 \cdot 10^{-5}$ $9.27 \cdot 10^{-5}$ $2.12 \cdot 10^{-4}$ $7.50 \cdot 10^{-7}$	25.1	-13.7
CN	119.92 125.03 129.97 $70.00b$)	$4.30 \cdot 10^{-5}$ $6.71 \cdot 10^{-5}$ $1.01 \cdot 10^{-4}$ $2.99 \cdot 10^{-7}$	26	-13.0

Table 2 (cont.)

Table 3. First-Order Rate Constants for 10^{-3} M Solutions of 2-R-5-exo-Norbornyl Tosylates (endo-10) (in 80% (v/v) EtOH)

R	$T[^{\circ}]$	$k [s^{-1}]$	H^* [kcal/mol]	S^{\neq} [cal/mol·degree]
CH ₃	40.22 51.10 60.09 70.00^a)	$6.31 \cdot 10^{-4}$ $1.77 \cdot 10^{-3}$ $4.75 \cdot 10^{-3}$ $1.19 \cdot 10^{-2}$	20.5	-8.1
CH ₂ OH	49.81 59.44 70.00	$4.99 \cdot 10^{-4}$ $1.46 \cdot 10^{-3}$ $4.13 \cdot 10^{-3}$	22.4	-4.5
CH_2OCH_3	59.44 70.00 79.92	$9.79 \cdot 10^{-4}$ $2.80 \cdot 10^{-3}$ $7.22 \cdot 10^{-3}$	22.1	-6.1
CH ₂ OAc	51.38 59.44 70.00	$1.65 \cdot 10^{-4}$ $3.89 \cdot 10^{-4}$ $1.21 \cdot 10^{-3}$	23.1	-5.0
CH ₂ Br	70.00 79.93 90.12	$9.19 \cdot 10^{-4}$ $2.40 \cdot 10^{-3}$ $5.72 \cdot 10^{-3}$	21.8	-9.1
CH ₂ OTs	70.00 79.93 90.12	$4.50 \cdot 10^{-4}$ $1.25 \cdot 10^{-3}$ $3.17 \cdot 10^{-3}$	23.3	-6.1

R	T [\degree]	$k \, [s^{-1}]$	H^* [kcal/mol]	S^{\neq} [cal/mol·degree]
COOCH ₃	70.00 79.93 90.12	$3.58 \cdot 10^{-4}$ $1.01 \cdot 10^{-3}$ $2.59 \cdot 10^{-3}$	23.7	-5.6
^{C1}	70.00^a) 90.09 99.68 109.97	$7.92 \cdot 10^{-5}$ $5.25 \cdot 10^{-4}$ $1.23 \cdot 10^{-3}$ $2.83 \cdot 10^{-3}$	22.7	-11.5
CN	70.00^a) 100.02 110.02 120.01	$1.87 \cdot 10^{-5}$ $3.18 \cdot 10^{-4}$ $7.56 \cdot 10^{-4}$ $1.66 \cdot 10^{-3}$	23.4	-12.4
^a) Extrapolated.				

Table 3 (cont.)

Table 4. First-Order Rate Constants for 10^{-3} M Solutions of 2-R-5-endo-Norbornyl Tosylates (endo-10) $(in 80\% (v/v) EtOH)$

$\mathbf R$	$T[^{\circ}]$	$k[s^{-1}]$	H^* [kcal/mol]	S^{\neq} [cal/mol·degree]	
CH ₃	70.00^a) 80.28 90.38 99.93	$6.36 \cdot 10^{-5}$ $1.77 \cdot 10^{-4}$ $4.91 \cdot 10^{-4}$ $1.11 \cdot 10^{-3}$	23.8	-8.7	
CH ₂ OCH ₃	$70.00a$) 90.02 99.32 109.52	$3.98 \cdot 10^{-5}$ $2.77 \cdot 10^{-4}$ $6.39 \cdot 10^{-4}$ $1.52 \cdot 10^{-3}$	23.4	-10.9	
CH ₂ OH	70.00^a) 89.86 99.92 109.97	$5.22 \cdot 10^{-5}$ $3.54 \cdot 10^{-4}$ $8.89 \cdot 10^{-4}$ $2.02 \cdot 10^{-3}$	23.8	-9.2	
CH ₂ OAc	70.00^a) 89.89 99.28 109.41	$2.15 \cdot 10^{-5}$ $1.62 \cdot 10^{-4}$ $3.97 \cdot 10^{-4}$ $9.64 \cdot 10^{-4}$	24.5	-8.4	
CH ₂ OT _s	$70.00a$) 89.90 99.29 110.46	$1.30 \cdot 10^{-5}$ $7.95 \cdot 10^{-5}$ $1.73 \cdot 10^{-4}$ $4.23 \cdot 10^{-4}$	21.8	-17.7	
CH ₂ Br	70.00^a) 100.55 109.96 120.05	$1.63 \cdot 10^{-5}$ $2.89 \cdot 10^{-4}$ $6.55 \cdot 10^{-4}$ $1.45 \cdot 10^{-3}$	23.4	-12.6	
COOCH3	$70.00a$) 99.30 109.55 119.67	$1.01 \cdot 10^{-5}$ $1.84 \cdot 10^{-4}$ $4.54 \cdot 10^{-4}$ $1.08 \cdot 10^{-3}$	24.5	-10.3	
Cl	70.00^a) 109.92 119.87 129.00	$3.04 \cdot 10^{-6}$ $1.07 \cdot 10^{-4}$ $2.41 \cdot 10^{-4}$ $4.92 \cdot 10^{-4}$	22.7	-18.0	

R	T ነገ	$k[s^{-1}]$	H^* [kcal/mol]	S^* [cal/mol·degree]
CN	70.00^a 109.33	$1.72 \cdot 10^{-6}$ $7.89 \cdot 10^{-5}$	24.7	-13.4
$1.87 \cdot 10^{-4}$ 119.54				
	129.75	$4.30 \cdot 10^{-4}$		
^a) Extrapolated.				

Table 4 (cont.)

Results. - The preparation of the tosylates 9 and 10, as well as their hydrolysis products, are reported elsewhere⁹). First-order rate constants for all four series were measured conductometrically in 80% (v/v) EtOH at three temperatures (*Tables 1–4*). Rate constants at 70° and exo/endo rate ratios are shown in Tables 5 and 6. Tables 7 and 8 summarize the hydrolysis products obtained after ten half lives in 70% (v/v) dioxane at the medium temperatures listed in Tables $1-4$. Yields in % were determined by capillary GC.

Table 5. Rate Constants for exo-9 and endo-9, and exo/endo Rate Ratios at 70°

R	k (exo-9)	k (endo-9)	k_{exo}/k_{endo}
H	$2.62 \cdot 10^{-2}$	$8.42 \cdot 10^{-5}$	311
CH ₂ OH	$1.30 \cdot 10^{-2}$	$4.64 \cdot 10^{-5}$	280
CH ₂ OAc	$3.83 \cdot 10^{-3}$	$1.51 \cdot 10^{-5}$	254
CH ₂ Cl	$3.09 \cdot 10^{-3}$	$1.19 \cdot 10^{-5}$	260
CH ₂ OTs	$1.51 \cdot 10^{-3}$	$5.92 \cdot 10^{-6}$	255
COOCH ₃	$5.50 \cdot 10^{-4}$	$3.45 \cdot 10^{-6}$	159
OAc	$2.34 \cdot 10^{-4}$	$1.56 \cdot 10^{-6}$	150
CI	$9.88 \cdot 10^{-5}$	$7.50 \cdot 10^{-7}$	132
CN	$2.97 \cdot 10^{-5}$	$2.99 \cdot 10^{-7}$	99

Table 6. Rate Constants for exo-10 and endo-10, and exo/endo Rate Ratios at 70°

R	k (exo-10)	k (endo-10)	k_{exol} / k_{endo}
H	$2.62 \cdot 10^{-2}$	$8.42 \cdot 10^{-5}$	311
CH ₃	$1.19 \cdot 10^{-2}$	$6.36 \cdot 10^{-5}$	187
CH ₂ OH	$4.13 \cdot 10^{-3}$	$5.22 \cdot 10^{-5}$	79
CH_2OCH_3	$2.80 \cdot 10^{-3}$	$3.98 \cdot 10^{-5}$	70
CH ₂ OAc	$1.21 \cdot 10^{-3}$	$2.15 \cdot 10^{-5}$	56
CH_2Br	$9.19 \cdot 10^{-4}$	$1.63 \cdot 10^{-5}$	56
CH ₂ OTs	$4.50 \cdot 10^{-4}$	$1.30 \cdot 10^{-5}$	35
COOCH ₃	$3.58 \cdot 10^{-4}$	$1.01 \cdot 10^{-5}$	35
Cl	$7.92 \cdot 10^{-5}$	$3.04 \cdot 10^{-6}$	9
CN	$1.87 \cdot 10^{-5}$	$1.72 \cdot 10^{-6}$	11

Table 7. Yields of Products ($[%$), $\pm 2%$) from the Reaction of 1-R-3-exo (exo-9) and (in brackets) 3-endo-Norbornyl Tosylates (endo-9) in 70% Dioxane

termined by 'H-NMR spectroscopy.

 $9₁$ See a following communication as well as the doctoral dissertation of Francesco Fuso, Basel, University Library, to appear 1987.

$\mathbf R$	19	20	21	22
CH ₃	41 (51)	43 (27)		9(10)
CH ₂ OH	43 (53)	47(31)		
CH ₂ OCH ₃	44 (62)	47 (32)		
CH ₂ OAc	45 (53)	49 (23)		
CH, Br	43 (59)	50 (29)		
CH ₂ OTs ^a	51 (72)	45(21)		
COOCH,	43 (70)	52(28)		
Cl ^b	38 (58)	57 (36)	$3(-)$	
CN	42 (72)	47 (20)	$1(-)$	
		^a) After 3.5 half-lives. ^b) After one half-live, the ionization of 19 (R=Cl) becomes noticeable.		

Table 8. Yields of Products ($[%$), \pm 2%) from the Reaction of 2-R-5-exo- (exo-10) and (in brackets) 5-endo-Norbornyl Tosylates (endo-10) in 70% Dioxane

Discussion. – In Figs. 1 and 2, the log k values for 9 and 10 are plotted against the respective inductive substituent constants σ_1^q [3]. The linear correlations¹⁰) show that

 $10₁$ Except for the points for exo-9 and endo-9 (R = CH₂OH). Electrofugal groups in the y-position give rise to exalted rates [15] and are, therefore, omitted.

substituents at $C(4)$ and at $C(5)$ control ionization rates by their I effects, as they do at $C(6)$ and $C(7)$ [1]. This fact excludes other possible controlling factors, such as steric bulk effects [4b] or changes of mechanism from $S₁$ to solvent $S₂^{11}$.

The ρ_1 values for C(4), C(5), C(6), and C(7) *(Figs. 1* and 2) are presented in formulas **11** and **12**. They show that, in the *exo*-series **11**, ρ_1 is practically the same for C(4), C(5), and $C(7)$ (-0.96), but much larger for $C(6)$ (-2.00). This emphasizes the special role of C(6) in dispersing positive charge from C(2). In the *endo-series* 12, the ρ_1 values are smaller and decrease in the order $C(4) > C(6) > C(7) > C(5)$. A possible explanation for the reduced inductivity of these C-atoms is that they are unfavorably aligned for dorsal participation in the ionization of the $C(2)$ -(endo-OTs) bond.

This is supported by the differences $\Delta \rho_1$ between the ρ_1 for the 2-exo- and 2-endoepimers of the 4-, *5-,* 6-, and 7-substituted norbornyl tosylates in Table 9. A comparison between the largest $\Delta \rho_1$ value of 1.22 for C(6) and the lowest $\Delta \rho_1$ of 0.17 for C(4) is instructive. **As** models show, C(6) is favorably placed to assist the ionization of the $C(2)$ - $(exo$ -OTs) bond, not, however, of the $C(2)$ - $(endo$ -OTs) bond. On the other hand, $C(4)$ and its substituents are only slightly better orientated to assist *exo*-ionization than endo-ionization. $C(5)$ again is somewhat better positioned for exo-ionization than for endo-ionization. Although $C(7)$ is dorsal to the $C(2)$ -(endo-OTs) bond, it does not participate effectively due to bridging strain [1 b]. Different degrees of participation could, therefore, be the cause of directional inductivity and, hence, also for varying $exo/endo$ rate ratios.

¹¹) Nucleophilic solvent participation reduces the charge at the reaction site with concomitant lowering of the ρ_I value [16].

R at	$\varDelta\rho_1$	$k_{exo}^{\rm CN}/k_{endo}^{\rm CN}$	Distance [A]
C(6)	1.22	0.88	2.50
C(5)	0.42		2.95
C(7)	0.24	66	2.40
C(4)	0.17	99	2.43

Table 9. Δp_1 *Values* (= $p_1(exo) - p_1(endo)$) for 4-, 5-, 6-, and 7-Substituted 2-exo- and 2-endo-Norbornyl Tosylates (70°), $k_{\text{ex}}/k_{\text{end}}$ for $R = CN$ and Approx. Distances from $C(2)^a$)

It has been known for some time that electron-attracting substituents at $C(5)$ decelerate the ionization of a 2-exo-nucleofuge more strongly than the ionization of the 2-endo-epimer, thereby reducing the k_{ex}/k_{rad} ratio relative to the parent compounds. Thus, *Lenoir* et *al.* reported that substituting *5-exo* -C1 for **H** in 2-norbornyl brosylates reduces k_{exo}/k_{endo} in 60% EtOH from 858 to 94 [12]. According to Apeloig et al. [13], $k_{\text{ev}}/k_{\text{end}}$ for the 5-exo-CN-substituted brosylates is 25 compared to 561 for the parent compounds. In the more ionizing solvent hexafluoroisopropanol, Wilcox and *Tuszynski* [14] observed a reduction of $k_{\text{exo}}/k_{\text{endo}}$ from 1400 to 5 for the corresponding tosylates. These authors attributed the decelerating effect of $-I$ substituents at C(5) to reduced σ participation of the $C(1)$ - $C(6)$ bond.

The present study shows that a CN group at $C(4)$, $C(7)$, $C(5)$, and $C(6)$ reduces $k_{\text{exo}}/k_{\text{endo}}$ from 311 for the parent tosylates to 99, 66, 11, and 0.88, respectively, *i.e.* in the order of increasing $\Delta \rho_1$ values (Table 9). This striking correspondence between rate ratios and Δp_1 suggests a more general rationale for charge dispersal in the norbornyl cation, namely differential participation of neighboring C-atoms, of which C(6) plays the dominant role in 2-exo-ionization.

The hydrolyses of the 4-substituted tosylates $exo-9$ and endo-9 yield practically the same amounts of two products, namely the 2-exo-norbornanols **13** and smaller amounts of the nortricyclanes **14** (Table *7)* "). The alcohols **13** are formed from exo-9 by substitution with complete retention, and from *endo*-9 with complete inversion of configuration at C(2). The formation of the same amounts of the same products strongly suggests a common intermediate for both exo- and *endo-* 9, namely the bridged 2-norbornyl cation **16.** This can be directly formed from exo-9 or *via* the ion pair **17** from endo-9.

Strong bridging as in **16** is a prerequisite for substitution with retention, but it also favors the formation of nortricyclanes **14** and rearrangement to **16a,** the enantiomer of **16.** This degenerate rearrangement, which is not detectable with unlabelled material¹³), must be extremely fast, as in the case of the parent ion $16 (R = H)$ [1]. The isomerisation **16** \rightleftarrows **16a** (R = H) resembles a skeletal vibration [1] [4a] and, as suggested more recently by *Bader* [17], a thermal motion, the symmetrical ion **18** then representing the vibrationally averaged structure.

In contrast, the hydrolyses of the 5-exo-substituted tosylates exo- **10** and *endo-* **10** yield different amounts of the two main products **19** and **20** (Table 8). The norbornanols 19 result from substitution with retention, the alcohols **20** from substitution with rearrangement. This result again points to a common intermediate, namely the bridged ion

¹²⁾ Only traces of 4-substituted norbornenes **15** were detected by *GLC.*

¹³⁾ For instance, C(2)-deuterated *exo-7* and *endo-7* would lead to 1- and 2-deuterated 2-norbornanols **13**

23, which equilibrates rapidly with the epimeric ion **24.** In this case, the rearrangement is not degenerate and the transition state **25,** therefore, unsymmetrical. Bridging in **23** is weakened by the $-I$ substituents Cl and CN, since significant amounts of the 2-endo-alcohols **21** are formed in these cases. Finally, exo- **10** (R = CH,) yields **9** % of 3-exo-methyl-2-exo-norbornanol **22** by way of a 1,3-hydride shift in **23.** This reaction probably also occurs in the **9** series, but is not detectable due to symmetry.

In conclusion, the inductivities ρ_1 in 11 and 12 reveal the degree of charge dispersal to $C(4)$, $C(5)$, $C(6)$, and $C(7)$ in the transition states for the ionization of 2-exo- and 2-endo-norbornyl tosylates. Inductivity is highest for C(6) in the exo-series **11** and lowest for C(5) in the endo-series **12.**

 ρ_1 Values reflect directional electron mobility, which in all cases is higher for 2-exoionization than for 2-endo-ionization. This can be ascribed to the fact that the $C(2)$ -(exo-OTs) bond is better aligned than the C(2)-(*endo*-OTs) bond for the participation of dorsal C-atoms. In addition, participation of $C(7)$ in $C(2)$ -(endo-OTs) bond cleavage generates more bridging strain. It would be interesting to determine charge dispersal in the free 2-norbornyl cation. This is precluded, however, because of the extremely fast rearrangements and hydride shifts which take place under stable-ion conditions [4c].

This work was supported by the Swiss National Science Foundation.

REFERENCES

- [I] a) W. Fischer, C. A. Groh, R. Hanreich, G. von Sprecher, A. Waldner, *Helv. Chim. Acta* 1981,64,2298; b) P. Flury, C. A. Groh, *ibid.* 1983,66, 1971; c) C. A. Groh, D. Herzfeld, *ibid.* 1982,65, 2443.
- [2] C. A. Groh, B. Giinther, R. Hanreich, *Helv. Chim. Acta* 1981,64,2312.
- [3] C. A. Groh, **B.** Schauh, **M.** G. Schlageter, *Helu. Chim. Acta* 1980,63, 57.
- (41 a) C. A. Groh, *Ace. Chem. Res.* 1983,16,426; b) H.C. Brown, *ibid.* 1983,16,432; c) **G.A.** Olah, G.K. **Surya** Prakash, M. Saunders, *ibid.* 1983, 16,440; d) C. Walling, *ibid.* 1983, 16,448.
- **[S]** W. Fischer, C.A. Groh, G. von Sprecher, A. Waldner, *Tetrahedron Lett.* 1979,1901, 1905.
- [6] B. Capon, S.P. McManus, 'Neighboring Group Participation', Plenum Press. New York, 1976.
- [7] G.A. Olah, *Chem. Scr.* 1981, 18, 97.
- **[S]** S. Ehrenson, *Prngr. Phys. Org. Chem.* 1964,2, 195; W. F., Reynolds, *ibid.* 1983,14, 165; L. M. Stock, *J. Chem.* Educ. 1972,49,400.
- [9] C. A. Groh, W. Schwarz, H.P. Fischer, *Helo. Chim. Acta* 1964,47,1385; P. von R. Schleyer, R. C. Fort, *J. Am. Chem. Soc.* 1964,86,4149.
- 101 P. von R. Schleyer, M. M. Donaldson, W. E. Watts, *1. Am. Chem. Soc.* 1965,87.375.
- 1 I] F. Fuso, C. A. Groh, P. Sawlewicz, Guo Wei Yao, *Tetrahedron Lett.* 1985,26, 3083.
- 121 D. Lenoir, W. Roll, E. Weiss, G. Wenke, *Tetrahedrnn Lett.* 1976, 1991.
- 131 Y. Apeloig, D. Lenoir, P. von R. Schleyer, *Tetrahedron Lett.* 1981,22,879.
- 141 C. F. Wilcox, W. J. Tuszynski, *Tetrahedron Lett.* 1982,23, 31 19.
- IS] W. Fischer, C. A. Groh, *Helv. Chim. Acta* 1978,61, 1588.
- 161 C. A. Grob, W. Waldner, *Helu. Chim. Aofa* 1980,63, 2152.
- 171 R. F. W. Bader, *Acc. Chem. Res.* 1985,IX. 9.
- 181 C.A. Groh, **A.** Waldner, **U.** Zutter, *Helv. Chim. Acta* 1984,67, 717.